July 20th, 2019

Книга

Парораспределение в машинах компаунд одинарного действия

Точнее, продолжение предыдущей части про машину Вестингауза. У Кеннеди всё же редкостно сумбурное изложение и полное отсутствие системы что в порядке, что в именовании глав. Что усугубляется тормознутостью планшета. Хотя, чувствую, в бумаге было бы труднее сдержать порывы разобрать книги физически и переставить до хоть какого-то отношения подобного к подобному.

Распределение пара в машине компаунд Вестингауза особенно ново и любопытно использованием единственного золотника/клапана вместо от двух до восьми их, как делают обычно. (Это лёгкое преувеличение, восемь клапанов таки можно встретить лишь в машине двойного действия.) Основы двукратного расширения пара в наше время настолько общеизвестны, что нам надо лишь бегло упомянуть их. Источник наибольших потерь в паровой машине — внутренняя конденсация, и цели многократного расширения в уменьшении этих потерь. Когда пар входит в цилиндр машины, сперва он нагревает его стенки почти до собственной температуры, от этого часть его конденсируется сразу. Когда пар расширяется после отсечки, его температура понижается, и после любого стоящего того расширения ко времени открытия выпуска становится на много градусов холоднее цилиндра. Естественно, тепло переходит от стенок цилиндра к пару на протяжении выпуска путём переиспарения воды, сконденсировавшейся при впуске, охлаждая стенки, и гарантируя конденсацию части пара при следующем впуске. Кратко, часть пара резко конденсируется прежде чем может совершить любую работу, и переиспаряется после, когда работу делать уже поздно, и теряется в выпуск.
Чем выше начальное давление и чем меньше температура отработанного пара, тем больше эти потери. Для любых данных начального и выпускного давления же их величина практически постоянна, с увеличением степени расширения же она составляет всё больший процент от используемого пара. В машине простого расширения после некоторой очень невысокой степени расширения потери от конденсации начинают перевешивать выгоду от дальнейшего расширения. (В первую очередь это конечно относится к насыщенному пару, но…) В машине двукратного расширения же мы делим разность температур между впуском и выпуском на два цилиндра, так что максимально возможная разность температур между паром и стенками в любом месте машины становится гораздо меньше, соответственно уменьшается и количество тепла, доступного для бесполезной передачи. Вдобавок, конденсация в цилиндре высокого давления не теряется полностью, так как переиспарившийся пар не выбрасывается, а переходит в цилиндр низкого давления, где совершает работу, частично компенсируя потери уже в нём.
Возьмём для примера две машины с выхлопом в атмосферу, одну простую, другую компаунд, получающие пар с давлением 7 бар по манометру. В первом случае в цилиндре температуры будут меняться от 170 до 100⁰C (забавно: в оригинале это были некруглые 338 и 212⁰F, но 100 и 30 psi, что намекает на обратный перевод единиц автором, работавшим то ли в смеси цельсиев с псями, то ли полностью в метрической системе), с разностью в 70⁰C. Во втором, если мы перепускаем пар из цилиндра высокого давления в цилиндр низкого при 2 бар (135⁰C), в каждом цилиндре перепад температур будет примерно вдвое меньше. Если обе машины расширяют пар в одинаковое число раз, и крутятся с одинаковой скоростью поршня, производя одинаковую мощность, цилиндр низкого давления машины компаунд будет практически того же размера, что (единственный) цилиндр машины простого расширения (кстати правило: мощность машины многократного расширения можно оценить, считая объём последнего цилиндра на давление в первом), и соответственно потери в первой будут составлять лишь половину от потерь во второй. Цилиндр высокого давления компаунда имеет площадь намного меньше, соответственно меньше в нём будет и теплопередача, а большая часть потерь в нём примет вид пара с давлением 2 атм, и неплохим запасом энергии, который отдаст во втором цилиндре.
Collapse )

Screenshot_2019-07-12-20-36-07
Фиг. 56 показывает обычный тип высокоскоростной машины двойного действия от гг. Дэви, Паксмена и компании, разработанной для электрогенераторов и оснащённой особым регулятором.
Итак, машины высокой скорости вращения были описаны полностью и каждый тип их проиллюстрирован. Сейчас они имеют преходящее значение, развивавшись бок-о-бок с динамо, и составляя вместе с паровым котлом самого до недавнего времени дешёвого производителя электроэнергии. Но со всех сторон нет сомнения что газовый двигатель с динамо показывает серьёзное уменьшение цены электричества, и в скором будущем соревнование между двумя первичными двигателями будет напряжённым.

Пост получился длинным, спать давно пора, так что мои комментарии и дополнения последуют отдельно. Скажу лишь что сферический эксцентрик с качающимся хомутом — треш и содомия. Непонятно почему нельзя было соединить с шариком на качалке таким же коротеньким шатуном, поставив промежуточную направляющую. А вот хомут с фланцами для удержания масла прекрасная идея. Моделисты обычно делают фланцы наоборот, на вращающемся диске, и они наоборот должны разбрасывать вытекающее из-под хомута масло. Благо излишков его там не бывает.